Localization of Buried Objects in Sediment Using High Resolution Array Processing Methods

نویسندگان

  • Caroline Fossati
  • Salah Bourennane
  • Julien Marot
چکیده

Non-invasive range and bearing estimation of buried objects, in the underwater acoustic environment, has received considerable attention (Granara et al., 1998). Many studies have been recently developed. Some of them use acoustic scattering to localize objects by analyzing acoustic resonance in the time-frequency domain, but these processes are usually limited to simple shaped objects (Nicq & Brussieux, 1998). In (Guillermin et al., 2000) the inversion of measured scattered acoustical waves is used to image buried object, but the frequencies used are high and the application in a real environment should be difficult. The acoustic imagery technique uses high frequencies that are too strongly attenuated inside the sediment therefore it is not suitable. Another method which uses a low frequency synthetic aperture sonar (SAS) has been applied on partially and shallowly buried cylinders in a sandy seabed (Hetet et al., 2004). Other techniques based on signal processing such as time reversal technic (Roux & Fink, 2000), have been also developed for object detection and localization but their applicability in real life has been proven only on cylinders oriented in certain ways and point scatterers. Furthermore, having techniques that operate well for simultaneous range and bearing estimation using wideband and fully correlated signals scattered from nearfield and farfield objects, in a noisy environment, remains a challenging problem. In this chapter, the proposed method is based on array processing methods combined with an acoustic scattering model. Array processing techniques, as the MUSIC method, have been widely used for acoustic point sources localization. Typically these techniques assume that the point sources are on the seabed and are in the farfield of the array so that the measured wavefronts are all planar. The goal then is to determine the direction of arrival (bearing) of these wavefronts. These techniques have not been used for bearing and range estimation of buried objects and in this chapter we are interested to extend them to this problem. This extension is a challenging problem because here the objects are not point sources, are buried in the seabed and can be everywhere (in the farfield or in the nearfield array). Thus the knowledge of the bearing is not sufficient to localize the buried object. Furthermore, the signals are correlated and the Gaussian noise should be taken into account. In addition we consider that the objects have known shapes. The principal parameters that disturb the object localization problem, are the noise, the lack of knowledge of the scattering model and the presence of correlated signals. In the literature there is any method able to solve all those parameters. However we can found a satisfying method to cope with each parameter (noise, 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Modelling of Under Ground Burried Objects Based on Ground Penetration Radar

There is a growing demand for mapping and 3D modelling of buried objects such as pipelines, agricultural hetitage, landmines and other buried objects. Usually, large scale and high resolution maps from these objects are needed. Manually map generation and modeling of these objects are cost and time consuming and is dependent on lots of resources. Therefore, automating the subsurface mapping and...

متن کامل

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

Design and Manipulation 3D Imaging System by using Photodiode Grid

Introduction: Radiation imaging is one of the applicable methods in diagnostic medicine and nondestructive testing for industrial applications. In nondestructive 3D imaging, in addition to the radiation source, there is a requirement for a suitable detection system, data acquisition system, mechanical sections for moving objects, reconstruction algorithm and finally a computer for processing an...

متن کامل

Subcritical scattering from buried elastic shells.

Buried objects have been largely undetectable by traditional high-frequency sonars due to their insignificant bottom penetration. Further, even a high grazing angle sonar approach is vastly limited by the coverage rate dictated by the finite water depth, making the detection and classification of buried objects using low frequency, subcritical sonar an interesting alternative. On the other hand...

متن کامل

Comparative Evaluation of Image Fusion Methods for Hyperspectral and Panchromatic Data Fusion in Agricultural and Urban Areas

Nowadays remote sensing plays a key role in the field of earth science studies due to some of the advantages, including data collection at a very low cost and time on a very large scale. Meanwhile, using hyperspectral data is of great importance due to the high spectral resolution. Because of some limitations, such as hyperspectral imaging technology, it suffers from a reduction in the spatial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012